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The interface between an emergency department and internal wards is often a hospital’s bottleneck. Motivated
by this interaction in an anonymous hospital, we analyze queueing systems with heterogeneous server pools,

where the pools represent the wards, and the servers are beds. Our queueing system, with a single centralized
queue and several server pools, forms an inverted-V model. We introduce the randomized most-idle (RMI)
routing policy and analyze it in the quality- and efficiency-driven regime, which is natural in our setting. The
RMI policy results in the same server fairness (measured by idleness ratios) as the longest-idle-server-first (LISF)
policy, which is commonly used in call centers and considered fair. However, the RMI policy utilizes only the
information on the number of idle servers in different pools, whereas the LISF policy requires information that
is unavailable in hospitals on a real-time basis.
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1. Introduction
Operations research methodologies, and queueing
theory in particular, have generated valuable insights
into operational strategies and practices, thus lead-
ing to solutions of significant problems in healthcare
systems. In concert with this state of affairs, we ana-
lyze patient flow in hospitals: specifically, we focus on
the emergency department (ED) and its interface with
four internal wards (IWs) in a large Israeli hospital;
we refer to it as Anonymous Hospital. Two opera-
tional problems could arise in this process: patients’
waiting times in the ED for a transfer to the IWs could
be long, and patient routing to the wards need not be
fair, as far as workload allocation among the wards is
concerned. In contrast to the majority of studies that
address the problem of long waiting times in EDs, we
explore the process of patient allocation to wards from
the fairness perspective. In search of an allocation
protocol that is fairness sensitive, we model the “ED-
to-IW” process as a queueing system with heteroge-
neous server pools: the pools represent the wards, and

servers are beds. Within this modeling framework, we
compare several routing strategies, thus identifying
the one most appropriate for a hospital setting.

1.1. Motivation
Two conclusions can be drawn from Anonymous
Hospital data (see Table 1 in §2.3). First, the fastest
and smallest ward (ward B) is subject to the highest
load: it experiences the highest number of patients per
bed per month, with bed occupancy that is compara-
ble to the other wards. The reasons behind the high
turnover rate of ward B are superior managerial and
staff practices, as well as (medically justified) varying
policies for patients release, which results in signifi-
cantly shorter average length of stay (ALOS). Impor-
tantly, a shorter ALOS does not come at the cost of
inferior medical care. Indeed, the level of return rates
(within three months) is comparable across wards.
Hence, one could argue that the allocation process of
patients from the ED to the IWs is not fair from the
point of view of medical staff, a problem that has been
observed in other Israeli hospitals as well.
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The second empirical conclusion is that some key
operational characteristics of the ED-to-IW process
coincide with the features that characterize moderate-
to large-scale queueing systems in the quality-
and efficiency-driven (QED) regime (Erlang 1948,
Halfin and Whitt 1981, Gans et al. 2003). Such a
regime achieves, simultaneously, high levels of oper-
ational service quality (ED waiting times significantly
shorter than service durations, specifically ALOS) and
resource efficiency (high bed occupancy).

1.2. Contributions
Our paper focuses on modeling the ED-to-IW pro-
cess, which is a key phase of patient flow in hospitals.
More broadly, in 2004, the Joint Commission on the
Accreditation of Healthcare Organizations (JCAHO
2004) set a standard (LD.3.10.10) for patient flow
leadership. The standard requires that healthcare
leaders “develop and implement plans to identify
and mitigate impediments to efficient patient flow
throughout the hospital.” It amplifies the need to
identify the critical factors that impact patient flow,
with the ultimate goal of designing and implementing
policies, processes, and procedures that track, moni-
tor, and improve patient flow throughout hospitals.

Although we concentrate on the impact of patient
routing on staff fairness, our work should be viewed
within the broader context of improving staff effi-
ciency by creating an appropriate incentives struc-
ture. Operational policies that are not perceived to be
fair could internalize inefficiencies, i.e., create situa-
tions where good work leads to more work. On the
other hand, fair policies not only reward staff mem-
bers with the best practices, but also promote the
adoption of such practices. Thus, although fair poli-
cies come at a certain cost in the short run, in the
long run they are likely to improve overall system
efficiency.

Our contributions are as follows:
• Based on empirical data from Anonymous Hos-

pital, we argue that an inverted-V queueing model
in the QED regime is appropriate for describing the
ED-to-IW process, which exhibits multiscale behavior
(e.g., IW lengths of stay being much longer than ED
waiting times).

• We quantify operational fairness toward medi-
cal staff by means of ratios that take into account
bed occupancy levels and bed turnover rates (the aver-
age number of admitted patients per bed per unit
of time)—two main metrics as far as workload of
medical staff is concerned. These metrics serve as
operational proxies for fairness, which is an intricate
concept. (Operational proxies relate to operations, are
easy to measure, and they approximate notions that
are hard to quantify.)

• Although routing algorithms that take into
account fairness have been considered in the litera-
ture, we propose a practical routing algorithm
(randomized most idle, or RMI) that is suitable for
hospitals where only limited and partial information
is available for patient routing; that is, we consider
the role of information in the performance of routing
policies.

• The proposed algorithm, RMI, is analyzed and
compared to known algorithms. Our results demon-
strate that RMI achieves a (long-run) level of fair-
ness toward medical staff that is the same as that
of algorithms that require more information to oper-
ate. Moreover, within our narrow notion of fairness,
based on occupancy and turnover rates, an extension
of our algorithm, weighted RMI, is flexible enough to
achieve any desired fairness.

• Furthermore, our results yield important insights
on differences between various routing algorithms,
differences that arise at the subdiffusion (room-level)
scale. In particular, these insights reveal that instanta-
neous imbalance of workload across the IWs is lim-
ited to just a few rooms of patients. Moreover, in the
course of just a few days this imbalance (if present)
disappears due to time averaging; i.e., empirical
workload time averages converge to the desired long-
run averages.

1.3. Brief Literature Review
There exists a vast amount of research on health-
care systems in numerous scientific fields including
operations research. We mention here the most rele-
vant to the present work; additional related references
can be found in Tseytlin (2009), Bekker and de Bruin
(2010), de Bruin et al. (2010), Kc and Terwiesch
(2009), González and Herrero (2004), de Véricourt and
Jennings (2011), and McManus et al. (2004), as well as
in each of the papers mentioned below. Readers are
also referred to Green (2004, 2008), who describes the
general background and issues involved in hospital
capacity planning.

Research papers (e.g., Litvak et al. 2001) and popu-
lar articles (e.g., New York Times 2002) both recognize
the importance of ED proper functioning and the con-
sequences of its overcrowding. Patient flow from the
ED to other medical units in the hospital (not just
the IWs) has received special attention (even becom-
ing the subject of a novel; Wright and King 2006).
In fact, it has been acknowledged as a major trigger
of ambulance diversion (Litvak et al. 2001), which is
of great concern. Ramakrishnan et al. (2005) construct
a two-time-scale model for a hospital system, where
the wards operate on a time scale of days and are
modeled by a discrete time Markov chain, and the ED
operates on a much faster time scale and is modeled
by a continuous time Markov chain. With the help
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of this model, Ramakrishnan et al. (2005) estimate
the expected occupancy of the wards and the prob-
ability of each ward reaching its capacity. The setup
in Ramakrishnan et al. (2005) corresponds to ours in
that the ED-to-IW process also operates in several
scales. These scales arise naturally from our asymp-
totic analysis (QED regime). Specifically, length of say
in wards, which correspond to our service times, are
naturally measures in days, whereas waiting in the
ED for transfer to the wards is naturally measured in
hours, which corresponds to our waiting times.

Relevant analyses of queueing systems with hetero-
geneous servers date back to the slow server prob-
lem (Rubinovitch 1985a). Initially, the focus was on
finding the best operating policy to minimize the
steady-state mean sojourn time of the customers in
the system, which is equivalent to minimizing the
long-run average number of customers in the system,
due to Little’s law. Under such criteria, it is preferable
to use the faster servers more than the slower servers.
In fact, under some circumstances, it is even advan-
tageous to remove the very slow servers and thus
reduce sojourn time. This slow server phenomenon is
addressed, for the case of two heterogeneous servers
and a single queue, by Larsen and Agrawala (1983),
Lin and Kumar (1984), Rubinovitch (1985a, b), and
Stockbridge (1991); and the general multiservers case
is addressed by Cabral (2005) (under the random
assignment (RA) policy, which routes a customer to
one of the idle servers at random). Later, Cabral
proved in Cabral (2007) that, for any two servers, the
fraction of time that the faster among them is busy
is smaller than that of the slower one, and the effec-
tive service rate of the faster server is higher than that
of the slower one. Except for Cabral (2007), none of
the studies mentioned above touches on the issue of
fairness toward servers.

In the context of large-scale systems, Armony (2005)
analyzed the fastest-servers-first (FSF) routing policy
that assigns customers to the fastest available pool.
She shows that FSF is asymptotically optimal (within
the set of all nonpreemptive, nonanticipating first-
come, first-served (FCFS) policies), in the sense that it
stochastically minimizes the stationary queue length
and waiting time as the arrival rate and number of
servers grow large; Armony and Mandelbaum (2012)
extended this result to accommodate abandonments.
Yet, under the FSF policy, asymptotically only the
slowest servers have any idle time. This is obviously
unfair toward the fast servers (which get “punished”
for being fast by working more), and it gives them
an incentive to slow down—an undesirable result for
the system as a whole. Thus, there exists a trade-off
between operational optimality for the system and
fairness toward servers (Armony and Ward 2010).

There is ample research aimed at achieving fairness
to customers; see, for example, references in Tseytlin
(2009). However, to our best knowledge, only recently,
Atar (2008) was the first to deal with the oper-
ational fairness-toward-servers issue. He studied a
single-server pools model in the QED regime, where
the number of servers and their service rates are
independent and identically distributed (i.i.d.) ran-
dom variables, under a policy that routes an arriv-
ing customer to the server that has been idle for
the longest time among all idle servers (in a deter-
ministic environment, this policy is called longest-
idle server first (LISF) by Armony 2005). Armony
and Ward (2010) extended LISF routing to longest-
weighted-idle-server-first (LWISF) routing, and pro-
posed a threshold policy that asymptotically (in the
QED regime) outperforms LWISF while achieving the
same target idleness ratios (IRs). Atar et al. (2011) pro-
posed the longest-idle-pool-first policy, that routes a
customer to the pool with the longest cumulative idle-
ness among the available pools; in the QED regime,
this policy is shown to balance cumulative idleness
among the pools. Most of these papers examine tran-
sient system behavior by establishing weak conver-
gence process-level results. In contrast, our work
deals with steady-state behavior.

Fairness (or justice, or equity) is a well-researched
area in the behavioral sciences (Colquitt et al. 2001).
We shall mention some relevant work later in §2.2.

1.4. Organization
The paper is organized as follows. In the next sec-
tion we describe the process for routing patients from
an ED to IWs, which reveals a fairness problem in
this process. Our queueing model, as well as the
QED regime, are introduced in §3. Fair routing algo-
rithms are described in §4. Section 5 contains our
theoretical results and a related discussion, including
managerial implications. Concluding remarks appear
in §6. Readers are referred to the online appendices
(Mandelbaum et al. 2011) for a description of the rout-
ing algorithm currently implemented at Anonymous
Hospital, the state of affairs in five other hospitals,
technical proofs, a table of notation, and a list of
acronyms.

2. Patient Routing
We study patient flow from the ED to the IWs in
hospitals. Our research site is Anonymous Hospital,
which is a large Israeli hospital with approximately
1,000 beds, 45 medical units, and approximately
75,000 patients hospitalized yearly. Among its variety
of units, it has a large ED with an average arrival rate
of 200–300 patients daily, who occupy up to 50 beds,
and five IWs, which we denote from A to E. The ED is
divided into two major subunits: internal and trauma
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(the latter being surgical and orthopedic patients). An
internal patient, whom the ED decides to hospitalize,
is directed to one of the five IWs according to a certain
routing policy—this routing process is the focus of
our research.

Departments of internal medicine are responsible
for catering to a wide range of internal disorders, pro-
viding inpatient medical care to thousands of patients
each year. Wards A–D are more or less similar in their
medical capabilities—each can treat multiple types
of patients. Ward E, on the other hand, treats only
“walking” patients, and routing to it differs from rout-
ing to the other wards. In our study we thus con-
centrate on the routing process to wards A–D only.
The existence of multiple wards with similar med-
ical capabilities is common in Israeli hospitals and
can be attributed to various factors, for example,
(i) there exist constraints in terms of physical space,
e.g., wards can be located on different floors of a
building; (ii) the existence of multiple wards implies
the existence of multiple positions of ward managers
(these positions are used by the hospital management
to attract top-performing doctors); and (iii) informal
research in Anonymous Hospital suggests that health-
care operations could exhibit diseconomies of scale
(this would, of course, discourage the formation of a
single superward).

2.1. The Routing Process
The decision of routing a to-be-hospitalized patient to
one of wards A–D is supported by a computer pro-
gram, referred to as the “Justice Table” at the hospi-
tal. As its name suggests, the algorithm’s goal is to
make the patient allocation to the wards fair, by bal-
ancing the load among the wards. Prior to routing,
patients are classified into three categories, accord-
ing to the complexity of treatment: ventilated, special
care, and regular. The program accepts a patient’s cat-
egory as an input parameter and returns a ward for
the patient (A–D) as an output. For each patient cat-
egory, there is round-robin order among the wards,
while accounting for the size of each ward by allo-
cating fewer patients to a smaller ward: for example,
two patients to B per three patients to A, reflecting a
30:45 bed ratio. The Justice Table does not take into
account the actual number of occupied beds and the
patient discharge rate. In Mandelbaum et al. (2011),
we provide a brief history of the Justice Table and a
more detailed description of the ED-to-IW process.

We recognize a problem in the process of patient
routing from the ID to the IWs: patient allocation to
the wards does not appear to be fair. In what follows,
we first examine the notion of fairness and then dis-
cuss the specifics present at Anonymous Hospital.

Remark 1. In addition to analyzing the ED-to-IW
process in one specific hospital, we examined how

this process is managed in five other Israeli hospi-
tals (see Mandelbaum et al. 2011). In particular, we
learned about the routing policies that are being used,
and how successful they are in terms of delays and
fair allocation. To this end, we used a questionnaire
that included both qualitative (detailed description of
the process, fairness considerations) and quantitative
(operational measures of the ED and IWs: capacity,
ALOS, waiting times) questions. Our study revealed
that unbalanced loads on the wards due to hetero-
geneity of ALOS are common in all our surveyed
hospitals.

2.2. Fairness
One can analyze fairness toward patients (customers)
and fairness toward wards—the latter covering med-
ical and nursing staff (servers). There is ample
literature on measuring fairness in queues from the
customer point of view (e.g., see Avi-Itzhak and Levy
2004, Larson 1987, Rafaeli et al. 2002). Various aspects
are investigated (for example, single queue versus
multiple queues, or FCFS versus other queueing dis-
ciplines), but all agree that the FCFS policy is typ-
ically essential for justice perception. Consequently,
customer satisfaction in a single queue is higher than
in multiple queues (Larson 1987), and waiting in a
multiqueue system produces a sense of lack of justice
even when no objective discrimination exists (Rafaeli
et al. 2002). The situation could be different in invis-
ible queues (e.g., call centers) and healthcare queues
(e.g., EDs). In the latter, clinical priority naturally
dominates FCFS justice.

Remark 2. We note that patient “service” in a ward
actually starts prior to the physical arrival of the
patient to the ward. Indeed, we observed that the
ward, once informed about a to-be-admitted patient,
starts preparing for this specific patient: different
patients, even if they fall under the same classifica-
tion, might require different preparations. This some-
times leads to the following scenario. Suppose that
a decision for hospitalization of patient X was made
prior to a decision of hospitalization of patient Y
(assuming both of them are clinically similar); say
patient X is directed to ward A and patient Y to
ward B. Now, suppose that ward B becomes ready
to physically admit the patient earlier than ward A—
hence patient Y joins a ward before patient X, although
Y “arrived” later (Elkin and Rozenberg 2007). In addi-
tion to this need for a ward to prepare for the patient,
the hospital staff refrains from modifying patient–
ward assignments also for a psychological reason:
a patient awaiting hospitalization (as well as accom-
panying individuals) experiences high levels of stress
as is—one thus does not wish to aggravate stress
by changing original ward assignments (Elkin and
Rozenberg 2007).
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In our work, we focus on the process of patient
assignment to wards, as opposed to the physical pro-
cess of patient transfer from the ED to the IWs.
We refer to the former as the ED-to-IW process.
(In this process, deviations from FCFS do not raise
fairness problems among patients since the assign-
ment queue is typically invisible to them.)

The literature on justice from the server point of
view is concerned with Equity Theory (Huseman et al.
1987), according to which workers perceive their jus-
tice by comparing ratios of outputs from the job to
inputs to the job. Specifically, if the output/input ratio
of an individual is perceived to be unequal to others,
then inequity exists. The larger the inequity the indi-
viduals perceive, the more uncomfortable they feel
and the harder they work to restore equity (Huseman
et al. 1987). Ben-Zrihen et al. (2007) showed that in
customer service centers, servers’ equity perception
has a positive influence on their performance and job
satisfaction. References to additional studies on the
importance of perceived justice among employees can
be found in Armony and Ward (2010).

Our anchor point is the survey reported in Elkin
and Rozenberg (2007), in which the staff (nurses, doc-
tors, and administration) were asked to grade the
extent of fairness in different routing policies. When
discussing fairness with ward staff, the consensus was
that each nurse/doctor should have the same work-
load as others. Seemingly, this is the same as say-
ing that each nurse/doctor should take care, at any
given time, over an equal number of patients (assum-
ing homogeneous customers, for simplicity). Because
the number of nurses and doctors is usually propor-
tional to standard capacity, this criterion is equiva-
lent to keeping occupancy levels of beds equal among
the wards.

Note that, by Little’s law, � = � × ALOS, where
� is the average occupancy level, and � is the bed
turnover rate. Thus, if one maintains ward occu-
pancies equal then wards with shorter ALOS will
have a higher turnover rate—admit more patients per
bed—which gives rise to additional fairness concerns.
Indeed, the load on staff is not spread uniformly over
a patient’s stay, because treatment during the first
days of hospitalization requires much more time and
effort from the staff than in the following days (Elkin
and Rozenberg 2007); moreover, patient admissions
and discharges significantly consume doctors’ and
nurses’ time and effort as well. Thus, even if occu-
pancy among wards is kept equal, the ward admit-
ting more patients per bed ends up having a higher
load on its staff. For these reasons, a natural alterna-
tive fairness criterion is balancing the turnover rate,
or the flux—namely, the number of admitted patients
per bed per unit of time (for example, per month)—
among the wards.

One can also combine utilization and flux to pro-
duce a single workload measure; fair routing would
maintain this measure equal across wards. For exam-
ple, load, experienced by medical staff in a ward,
can be roughly divided into two parts: load asso-
ciated with treating hospitalized patients (quantified
by utilization) and load due to patient admissions/
discharges (quantified by flux). For example, a single
(objective) workload measure for a nurse, based on
a linear combination of utilization and flux, was pro-
posed by Tseytlin (2009, §7.2):

�iNiT
�
i +�iNiT

�
i

ni

1 (1)

where �i is the flux, �i is the occupancy level, Ni is
the number of beds in the ward, T �

i is the average
amount of time required from a nurse to complete one
admission plus discharge, T �

i is the average time of
treatment required by a hospitalized patient per unit
of time, and ni is the number of nurses in the ward;
all quantities refer to a given ward i.

2.3. The Setting of Anonymous Hospital
Although wards A–D in Anonymous Hospital pro-
vide similar medical services, they do differ in their
operational characteristics (see Table 1), which we
now elaborate on. First of all, each medical unit
is characterized by its capacity. A ward’s capac-
ity is measured by its number of beds (standard
static capacity) and number of service providers—
doctors, nurses, administrative staff, and support staff
(dynamic capacity). The “maximal” static capacity
stands for the standard static capacity plus extra beds,
which can be placed in corridors during overloaded
periods. It is convenient to introduce notions of a
subward and a patient room; these will play a role
in a discussion of our results. Wards consist of sub-
wards, which, in turn, are made up of physically colo-
cated rooms. There a few (two to three) subwards in

Table 1 Internal Wards Operational Measures

Ward A Ward B Ward C Ward D

ALOSa (days) 6.5 (±0.19) 4.5 (±0.15) 5.4 (±0.22) 5.7 (±0.18)
Mean occupancy 9708 9404 8608 9101

level (%)
Mean # patients 20505 18706 21000 20906

per month
Standard (maximal) 45 (52) 30 (35) 44 (46) 42 (44)

capacity (# beds)
Mean # patients per 4058 6038 4089 4086

bed per month
Return rate (within 1604 1704 1902 1706

3 months) (%)

Notes. Data refer to the period May 1, 2006–October 30, 2008 (excluding
January–March 2007, when ward B was in charge of an additional subward).
The data cover 16,947 admissions in total.

aThe level of confidence for average length of stay (ALOS) is 95%.
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Table 2 Numbers of Admitted Patients to Wards A–D for Each Patient Category

IW\Patient type Regular Special care Ventilated Total

Ward A 2,316 (50.3%) 2,206 (47.9%) 83 (1.8%) 4,605 (25.2%)
Ward B 1,676 (43.0%) 2,135 (54.7%) 90 (2.3%) 3,901 (21.4%)
Ward C 2,310 (49.9%) 2,232 (48.2%) 88 (1.9%) 4,630 (25.4%)
Ward D 2,737 (53.5%) 2,291 (44.8%) 89 (1.7%) 5,117 (28.0%)

Total 9,039 (49.5%) 8,864 (48.6%) 350 (1.9%) 18,253

Note. Data refer to the period May 1, 2006–September 1, 2008 (excluding the months January–March 2007, when
ward B was in charge of an additional subward).

a ward, and a subward consists of several (three to
four) rooms.

In our hospital IWs, the dynamic capacity dur-
ing a particular shift is determined proportionally
to the static capacity (see, however, discussions on
the appropriateness of such “proportional” staffing
in de Véricourt and Jennings 2011, Green 2008, Yom-
Tov 2007). In particular, an IW beds-to-nurses ratio in
morning shifts is 5:1 or 6:1 (depending on the num-
ber of “intensive care” beds in a ward); during night
shifts, the ratio is 8:1 or 9:1. Note that the number of
nurses is determined by the number of beds in a ward
rather than the number of occupied beds (patients).
Hence a unit’s operational capacity can be character-
ized by its number of beds only—denoted as its stan-
dard capacity.

2.4. Fairness at Anonymous Hospital
Medical units are further characterized by vari-
ous performance measures: operational (average bed
occupancy level, ALOS, waiting times for various
resources, number of patients admitted or released
per bed per time unit (flux)) and quality (patients’
return rate, patients’ satisfaction, mortality rate, etc.).
Note that occupancy levels and flux are calculated
relatively to wards’ standard capacities. (Thus, occu-
pancy can exceed 100%.) Comparing the two basic
measures, ward capacity and ALOS, we observe in
Table 1 that the wards differ in both. Indeed, ward B
is significantly the smallest and the “fastest” (short-
est ALOS) among wards A–D. We observe that the
mean occupancy rate in this ward is high (compara-
ble to that in wards A and D; higher than in ward C).
In addition, the number of patients hospitalized per
month in this ward is about 90% of those hospital-
ized per month in the other wards, although its size
is merely about two–thirds of the others. As a con-
sequence, the flux in ward B (6.38 patients per bed
per month) is significantly the highest. Because nurs-
ers and doctors in Anonymous Hospital are assigned
to particular wards and are salaried workers (as
opposed to hourly workers), the load on the ward B
staff is hence the highest. Because the staff-to-beds
ratio is fixed, if ALOS is kept constant, the occupancy

rate in a ward serves a measure of the load on the
staff in that ward.

Short ALOS could be caused by multiple reasons.
For example, it can result from a superior effi-
cient clinical treatment or a liberal (versus conser-
vative) release policy; a clinically too-early discharge
of patients is clearly undesirable. One possible (and
accessible) quality measure of clinical care is patients’
return rate (proportion of patients who are rehospital-
ized in the IWs within a certain period of time—in
our case, three months). In Table 1 we observe that
the return rate in ward B does not differ significantly
from the other wards. Also, patients’ satisfaction level
in surveys—another measure of care quality—does
not differ in ward B (Elkin and Rozenberg 2007). Fur-
thermore, the difference in ALOS across wards could
be due to different wards treating different types of
patients and/or performing different types of proce-
dures. However, our data do not support this hypoth-
esis. In fact, according to Table 2, ward B handles
a disproportionate share of special-case and venti-
lated patients, patients that require longer ALOS on
average. Rather, a shorter ALOS in ward B can be
attributed to superior staff practices. We conclude that
the most efficient ward, instead of being rewarded,
is exposed to the highest load; hence, patient alloca-
tion appears unfair, as far as the wards are concerned.
Increasing fairness in the routing process is expected
to increase staff satisfaction, as well as provide incen-
tives for improved care and cooperation.

3. Model Formulation
We model the ED-to-IW process as a queueing system
with heterogeneous pools of i.i.d. servers. Arrivals to
the system are patients to be hospitalized in the IWs;
pools represent the IWs, which indeed have different
service rates (1/ALOS); and the number of servers
in each pool corresponds to the number of beds in
each ward. To create a tractable system, we assume
that arrivals to the wards occur according to a Poisson
process, and LOSs in wards are exponentially dis-
tributed. (Both assumptions are important for analyt-
ical tractability, but they are inaccurate reality-wise;
see Armony et al. (2011) for empirical findings on
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Figure 1 Inverted-V System

�1 �2 �K

N1 N2 NK

�

arrivals and LOS). Although, as remarked in §2.1,
patients to be hospitalized in the IWs are classified
into several categories, we analyze here a single cus-
tomer class model. This, as well as our distributional
assumptions, certainly could present a limitation for
application of our theoretical results, but we are still
able to draw useful insights about fair routing in
hospitals.

3.1. The Inverted-V Model
Consider the queueing system shown in Figure 1. This
∧-model, or inverted-V model (in the terminology
of Armony 2005), consists of K server pools: pool i has
Ni i.i.d. servers, each with exponential service times
of rate �i (namely, service rates are equal within each
pool but vary among the pools). The total number of
servers in the system is N =

∑K
i=1 Ni. Upon arrival,

a customer is routed to one of the available pools
(if it has one or more idle servers) or joins a cen-
tralized queue of infinite capacity if all the servers
at all pools are busy. Homogeneous customers arrive
according to a Poisson process with rate � > 0. Each
customer requires a service that can be provided by
any of the servers, and each server can serve only
one customer at a time. The queueing discipline is
FCFS, nonpreemptive (the service of a customer can
not be interrupted once started), and work conserv-
ing (there are no idle servers whenever there are cus-
tomers awaiting service in the queue). In addition, we
assume that all interarrival and service times are sta-
tistically independent.

Remark 3. Our model is centered around beds
rather than personnel. In the setup of Anonymous

Hospital (see §§2.3 and 2.4), there exists a direct con-
nection between the number of patients (occupied
beds) and staff workload in a ward, a key feature that
is utilized in our model. It is possible to conceive of
an alternative, more complex model that focuses on
the nursing staff directly; nevertheless, as explained
in §6.2, our simpler model still captures the essentials
of fair routing, if looked at through the appropriate
“lenses.”

3.2. The QED Asymptotic Regime
In this section, we formally introduce the QED regime
in the context of the inverted-V model. We provide
some justification for its applicability in modeling the
ED-to-IW process as well.

The QED regime was first discovered by Erlang
(1948); it was mathematically formalized by Halfin
and Whitt (1981), hence it is often referred to as the
Halfin-Whitt regime. The regime can be informally
characterized in terms of any one of the following
conditions: a (steady-state) system with a large vol-
ume of arrivals (demand) and many servers (supply
or capacity) is operating in the QED regime if (i) the
delay probability is neither near 1 nor near 0, (ii) its
waiting time is one order of magnitude shorter than
service time (e.g., seconds versus minutes in call cen-
ters, hours versus days in our case), or (iii) its total
service capacity is equal to its demand up to a safety
capacity, which is of the same order of magnitude
as the square root of the demand. Characterizations
(i) and (ii) relate to the quality aspect, and charac-
terization (iii) points at high server efficiencies; thus,
the QED regime achieves high levels of both service
quality and system efficiency by carefully balancing
between the two (Armony 2005, Gans et al. 2003). The
suitability of the QED regime to the ED-to-IW process
was studied in detail in Armony et al. (2011). Here
we emphasize the following relevant empirical facts:

• The number of servers (beds) in each pool (ward)
is approximately 30–50 (Table 1)—the system is large
enough for QED approximations to apply (Borst et al.
2004, Zhang et al. 2012, Yom-Tov 2010).

• Servers’ utilization (bed occupancy) is above 85%
(Table 1).

• Waiting times are indeed an order of magni-
tude shorter than service times: hours versus days.
Observe that a waiting time in our inverted-V model
corresponds to a patient waiting in the ED due to
lack of available beds in IWs only, i.e., bed alloca-
tion time—the amount of time from the decision to
hospitalize the patient until a bed becomes available
in one of the IWs. In particular, if a bed is available
at the time of the hospitalization decision, the corre-
sponding bed allocation time is zero. However, esti-
mating bed allocation times is difficult because they
are not tracked by Anonymous Hospital’s informa-
tion systems. Hence, we estimated the time between
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the hospitalization decision and the time of the first
procedure in the IW (see Mandelbaum et al. 2011).
This time serves as an upper bound on bed allocation
time. Because the latter is a major component of the
total waiting time in the ED, we conclude that both
quantities are in the order of hours. A service time
in the inverted-V model corresponds to the interval
from the time when a patient occupies a bed until the
time the patient releases the bed (or, more precisely,
until the bed becomes available next).

• The probability of encountering an available bed
in the designated ward, upon hospitalization deci-
sion (relatively to the wards’ standard capacities), is
estimatedto be 43%, 48%, 76%, and 55%, for wards
A–D, respectively. The probability of encountering
an available bed in any of the wards is approxi-
mately 84%; this estimate is based on a long period
of time, which includes lightly loaded periods (the
arrival process is nonstationary). If one considers only
highly loaded winter months (November to April),
the probabilities of encountering an available bed in
wards A–D are 29%, 35%, 64%, and 45%, respectively;
the probability of encountering an available bed in
any of the wards is 75% (this probability is the lowest
in January—59%).

Remark 4. The probability of being admitted to
a ward immediately (or within a short time) after
the hospitalization decision is much smaller than
the probability of encountering an available bed (see
Figure 7 in Mandelbaum et al. 2011). Indeed, during
the period May 1, 2006, to October 30, 2008 (excluding
the months January–March of 2007), only 2.7% of the
patients were admitted to an IW within 15 minutes
from their assignment to a ward. This fact is consis-
tent with the efficiency-driven regime. We further note
that, in evening shifts (when most patients are admit-
ted; Armony et al. 2011), there usually are one or two
doctors in each ward; hence, one expects that they
operate under high loads. In that case, the probability
of encountering an available doctor, which is a pre-
requisite for being admitted to a ward, should indeed
be at ED levels (but we do not have any data on staff
availability). We thus have two parallel queueing sys-
tems: beds, which are QED, and medical staff, who
are ED. As already indicated, we focus on the former.

We use the following scaling, suitable for the
inverted-V model. Consider a sequence of systems,
indexed by � (to appear as a superscript), with
increasing arrival rates � → �, and increasing total
number of servers N �, but with fixed service rates
4�11 0 0 0 1�K5. Then, the service capacity of pool i is
c�i = N �

i �i, the total service capacity is c� =
∑K

i=1 c
�
i ,

and the total traffic intensity is �� = �/c�. Both �
and N � tend to infinity simultaneously, in a way that
two limiting relations are satisfied. First, for large �,

each pool has a nonnegligible fraction of the total
capacity:

c�i /c
�
→ ai1 as �→ �1 (C1)

where ai > 0 4i = 1121 0 0 0 1K), and
∑K

i=1 ai = 1. The
scalar ai is the limiting proportion of the service
capacity of pool i (i = 1121 0 0 0 1K) out of the total
capacity. Second, it is convenient to define a scaling
parameter,

�� 2= �/�̂1

where �̂ is the arithmetic-mean service rate,

�̂ 2=
K
∑

i=1

ai�i3

it is appropriate to think of �� as an effective sys-
tem size. Then, the following condition is assumed to
hold: √

�� 41 −��5→ �> 01 as �→ �0 (C2)

This limit implies �� → 1 (high utilization), as �→ �,
and is (asymptotically) equivalent to the classical
square-root safety staffing rule: the total service capac-
ity, c� = � + �

√

��̂ + o4
√
�5, is equal to the arrival

rate, �, plus a square-root safety capacity, �
√

��̂,
where � is some quality-of-service parameter (the
larger the value of �, the higher the service quality);
here, � is a unitless quantity, whereas c�, �, and

√

��̂
are measured in the same units (e.g., patients/week).
Note that fluctuations of the arrival process from its
mean (�) are proportional to

√
�. With � being the

harmonic-mean service rate,

�−1 2=
K
∑

i=1

ai�
−1
i 1

(C1) and (C2) then imply

�

N �
=

�
∑K

i=1 c
�
i /�i

→�1

as �→ �. In view of this, (C2) can be rewritten as
√
N �41 −��5→ � 2= �

√

�̂/�1

as � → �. Finally, we define qi to be the limiting
fraction of pool i servers, out of the total number of
servers:

N �
i

N �
→

ai
�i

� 2= qi1 (2)

as � → �; the limit is due to (C1) and (C2).
Because ai > 0, for all i, we also have that qi > 0, for
all i, i.e., the pools are of comparable sizes. Clearly,
∑K

i=1 qi = 1, and
∑K

i=1 qi�i =�. Therefore, one can inter-
pret � as the (limiting) average service rate of a server
in the system, whereas �̂ is the (limiting) average
service rate at which customers receive service. The
two quantities differ because faster servers serve more
customers. (Note that �≤ �̂, with equality if and only
if all �i’s are equal to each other, in which case �= �
and �� =N �.)
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4. Fair Routing
Before introducing formally two criteria of fairness
within the context of the inverted-V model, we need
some notation. Denote by I�i the long-run (steady-
state) number of idle servers at pool i (i = 1121 0 0 0 1K);
each I�i is a random variable that attains values in
80111 0 0 0 1N �

i 9 (i = 1121 0 0 0 1K). Let ��
i 2= 1 − ƐI�i /N

�
i

be the mean long-run (steady-state) occupancy rate
in pool i. As the servers within each pool are sym-
metric, ��

i also stands for the utilization of servers in
pool i—the fraction of time that each server is busy in
the long run (steady state). Finally, we denote by ��

i

the average flux through pool i (average number of
service completions per pool i server per time unit):
��
i = �i�

�
i , by Little’s law. Clearly, �i stands also for

the average effective service rate of a server in pool i.
When analyzing fairness toward servers, we con-

sider the following two criteria: occupancy balanc-
ing and flux balancing. The server’s utilization, or,
equivalently, the pool’s occupancy rate, is one of
the prevalent measures of the server’s workload. As
the occupancy rates at all pools tend to one in the
QED regime (see (C2)); we thus compare the ratio
between the proportions of idle servers in the pools
41 − ��

i 5/41 − ��
j 5, referred to as the idleness ratios. The

closer these ratios are to unity, the more balanced
the routing is, according to the occupancy-balancing
criterion. The second criterion takes into account the
additional measure of workload, the average “flux”
through the pools, namely, the number of customers
served by a server per time unit. Hence, our sec-
ond criterion is based on the flux ratios �i/�j . The
closer this ratio is to unity, the more balanced the
routing is, according to the flux-balancing criterion.
Note that, in the QED regime, �i/�j →�i/�j as �→ �

for any work-conserving routing algorithm; that is,
pools with higher service rates experience higher flux.
Hence, based on the discussion in §2.2, it is appro-
priate to have lower utilization for pools with higher
service rates. Equivalently, if the flux ratio for two
pools is greater than one (because of the difference
in the service rates), then the idleness ratio should be
greater than one as well. The algorithms we discuss
in the next subsection all achieve this goal.

4.1. Routing Algorithms
In this subsection, we describe three routing algo-
rithms. All three are work conserving, a choice that
is dictated by our goal to reduce queue length
(or, equivalently, waiting time by Little’s law) rather
than the number-in-system (sojourn time). In the ED-
to-IW setting, the objective is to minimize the “queue”
for transfer to the wards, thus reducing the overload
on the ED. Work conservation is discussed further in
the remark at the end of the present subsection.

Next, we describe the three routing algorithms
and their implications on server fairness. Let I�i 4t5 ∈

801 0 0 0 1N �
i 9 denote the number of idle servers in

pool i (i = 1121 0 0 0 1K) at time t. When there are
no customers awaiting service at time t, the vec-
tor 4I�1 4t51 0 0 0 1 I

�
K4t55 specifies the state of the system.

However, when the waiting queue is not empty, an
additional variable is needed to specify the number
of customers awaiting service; let Q�4t5 ∈ 80111 0 0 09 be
the number of customers awaiting service at time t.
It is convenient to define I�4t5 ∈ 80 0 0 1N � − 11N �9 as
(jointly) the total number of idle servers awaiting
customers/number of customers awaiting servers, at
time t:

I�4t5=

K
∑

i=1

I�i 4t5−Q�4t50 (3)

Note that I�4t5 can take negative values: 8I�4t5 = −i9,
i ≥ 1, indicates that there are i customers awaiting
service at time t. Because of work conservation, one
has

∑K
i=1 I

�
i 4t5= 4I�4t55+ and Q�4t5= 4I�4t55−, where x+

and x− denote the positive and negative parts of x,
respectively.

4.1.1. LISF Routing. The LISF policy routes a cus-
tomer to a server that has been idle for the longest
time among all idle servers. This policy is commonly
used in call centers and considered to be fair (Armony
and Ward 2010). It was first analyzed (in the QED
regime) by Atar (2008) in the context of a single-
pool system in a random environment (service rates
were taken to be i.i.d. random variables). Armony and
Ward (2010) analyzed LISF routing in the inverted-V
model with two (K = 2) pools. Informally, they show
that, for large � > 0, the LISF policy maintains fixed
ratios between the number of idle servers in different
pools, whenever idle servers exists; that is, if I�4t5 > 0
at time t, then

I�i 4t5

I�j 4t5
≈

ai4I
�4t55+

aj4I
�4t55+

=
ai
aj
0

Hence, up to some technical conditions (see the dis-
cussion prior to Corollary 4.2 in Gurvich and Whitt
2009), under LISF routing one expects

1 −��
i

1 −��
j

=
ƐI�i
N �

i

/ ƐI�j
N �

j

→
aiqj

ajqi
=

�i

�j

1

and ��
i /�

�
j → �i/�j , as � → �; i.e., both the idleness

and flux ratios tend to the ratios of server rates. The
algorithm leads to a desirable outcome: fast servers
work less (have lower utilization) but “produce” more
(have higher flux).

Note that even though LISF is a “blind” policy
(a policy that requires, at the time of routing deci-
sion, none or minimal information on the parameters
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of the system or the system state; Atar et al. 2011),
implementing the LISF policy in the hospital setting is
not straightforward; namely, one must keep track not
only on the number of idle servers (beds) in each pool
(ward), but also the relative ordering of idle servers in
terms of their idle times. The latter information is not
currently available in hospitals. This fact motivates us
to consider alternative routing policies that achieve
the same (asymptotic) fairness toward servers but uti-
lize less information for customer routing.

4.1.2. IR Routing. The IR routing policy is a way
to achieve the same idleness ratio as the LISF pol-
icy, but without the information on idleness times.
This policy is a special case of queues-and-idleness-
ratio (QIR) policies, which were proposed and ana-
lyzed by Gurvich and Whitt (2009). They consider
a generalization of the inverted-V model, a parallel-
server system—a service system with multiple server
pools and multiple customer classes. The problem of
dynamic control of such systems is often referred to
as “skill-based routing” (borrowing the terminology
from the world of call centers). Adopting the QIR pol-
icy to the inverted-V model, IR routes a customer
to the server pool with the highest idleness imbal-
ance. The basic idea is to route each customer in
such a way that the vector 4I�i 4t51 0 0 0 1 I

�
K4t55 is as close

to 4w14I
�4t55+1 0 0 0 1wK4I

�4t55+5 as possible, where the
set of positive constants 8wi9 is a priori fixed, with
∑K

i=1 wi = 1. For example, if K = 2 and w1 = w2 =

1/2, then the IR policy routes a customer to the pool
with the higher number of idle servers. Specifically,
at time t, a customer is routed to the pool with the
index

arg max
i

{

I�i 4t−5−wi4I
�4t−55+

}

0

Ties are broken in an arbitrary but consistent fashion;
the tie-breaking rule does not impact the results at
the diffusion (

√
��) scale. Gurvich and Whitt (2009)

showed that (Q)IR controls drive the idleness process
to the predetermined proportions 8wi9, in the QED
regime. Following the same argument as in the LISF
case, one expects

1 −��
i

1 −��
j

=
ƐI�i
N �

i

/ ƐI�j
N �

j

→
wiqj

wjqi
1

and ��
i /�

�
j → �i/�j , as � → �. Therefore, with the

IR algorithm, one can achieve the same ratio of the
number of idle server (and idleness ratios) as under
the LISF algorithm by simply setting wi = ai, because
4wiqj5/4wjqi5 = �i/�j (see (2)). Given its weights, the
IR policy is a blind policy as only the information on
the number of idle servers in each pool is needed.
However, determining the values of ai is far from
straightforward in the hospital setting. In particular,
note that ai represents the limiting ratio between the

pool i service capacity (c�i ) and the total service capac-
ity (c�). Therefore, because one must estimate the ser-
vice rates to evaluate the appropriate weights, the
considered version of the policy is, effectively, not
blind. Recall from §2 that the capacity (number of
beds) of each ward can vary with time; e.g., during
the first three months of 2007, ward B was in charge
of an additional subward. These facts serve as a moti-
vation for considering yet a third routing algorithm,
based on further reduced information.

4.1.3. RMI Routing. We now introduce the RMI
routing policy. As our results in the next section indi-
cate, the RMI policy achieves the same ratios of idle-
ness between server pools as the LISF and IR (with
wi = ai) policies on the diffusion scale, and yet it
requires information on neither idleness times nor on
pool capacities. Under the RMI policy, a customer is
assigned to one of the available pools, with probability
that equals the fraction of idle servers in that pool out
of the overall number of idle servers in the system
(hence, the name of the policy); that is, a customer to
be routed at time t is assigned to pool i with prob-
ability I�i 4t−5/4I�4t−55+. Tseytlin (2009) observed that
the RMI policy, in the inverted-V model, is equiva-
lent to the RA policy in the single-server pool model
with N � servers, where N �

i servers have rate �i (i =

11 0 0 0 1K). To illustrate this, consider the following
example. Assume that a customer arrives to the sys-
tem with two available pools: pool i has two available
servers, and pool j has three available servers. Thus,
the customer is routed to pool i with probability 2/5
and to pool j with probability 3/5. As in pool i, there
are two available i.i.d. servers, and each one of them
will serve this customer with probability 1/5; simi-
larly, each server in pool j will serve the customer
with probability 1/5. As a consequence, the customer
is assigned to any one of the five available servers
with equal probabilities.

An analytically appealing feature of the RMI pol-
icy is that, when modeled as a Markov chain in
continuous time, the system is reversible (Kelly
1979) (Tseytlin 2009 conjectured that this is the only
routing policy under which the inverted-V system
induces a reversible Markov chain). Therefore, one
is able to derive its steady-state probabilities in a
straightforward manner and provide an exact anal-
ysis in steady state. (Because of their complexities,
LISF and IR policies were analyzed only asymptot-
ically.) Finally, we note that, even though RMI is a
randomized policy, it can be easily implemented in
a hospital setting. For example, patient ID numbers
can be utilized as sources of randomness (as stated
by Mandelbaum et al. 2011, at least one hospital in
our survey has implemented some randomized pol-
icy, based on patient ID numbers).
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Remark 5. (Why Work Conserving?). The three
considered algorithms are work conserving. This
assumption is not restrictive from the point of view of
both hospital and patients. The goal is to reduce the
waiting times in the ED so that the number of patients
awaiting transfer from the ED to the IWs is min-
imized. Therefore, implementing a work-conserving
policy is desirable because intentional server idling
only increases the number of patients in the ED.
Tseytlin (2009) showed that, under the waiting time
criterion and RMI routing, it is not beneficial to discard
slow servers, i.e., it is not desirable to intentionally
idle servers. On the other hand, when the objective
is to minimize the sojourn time (waiting plus ser-
vice times), cases arise when it is beneficial to discard
slow servers in a system with heterogeneous servers.
Within the context of the well-known slow-server prob-
lem, this was shown for two servers (Rubinovitch
1985a) and many servers (Cabral 2005); namely, if
some servers are slow enough, roughly speaking, it
could turn out preferable for a waiting customer to
wait for a fast server to become available rather than
start service at a slow server. Thus, as far as sojourn
time is concerned (but not waiting time), a non-work-
conserving policy could turn out preferable.

5. Theoretical Results
The following theorem characterizes RMI perfor-
mance, in the nonasymptotic regime (finite arrival
rate �). The theorem states that when comparing two
pools, servers utilization in the faster pool is lower
than that in the slower pool, but the flux in the faster
is higher than in the slower. Because of the symmetry
of servers within each pool, this implies that, when
considering any two servers, the faster between the
two will work less time than the slower one, but,
at the same time, the faster server will serve more cus-
tomers than the slower. The result suggests, first of all,
some form of fairness: faster servers are “rewarded”
by working less time. In addition, operational prefer-
ences of the system are accommodated as well: more
customers are served by faster servers than by slower
servers. We note that Cabral (2007) proved this result,
for the single-server-pool system under the RA policy,
independently.

Theorem 1. In the inverted-V model under the RMI
policy, for any two pools i and j , if �i >�j , then ��

i < ��
j

and ��
i >��

j .

Proof. See Mandelbaum et al. (2011). �
The theorem provides an upper and lower bound

on the ratio of server utilizations (assuming �i >
�j52 �j/�i < ��

i /�
�
j < 1. This suggests that the differ-

ence in utilizations of any two servers is more signif-
icant the more their service rates differ: for �j ≈�i,

one has ��
j ≈ ��

i , but as �j grows smaller than �i,
the server-utilization ratio decreases. The bounds on
the flux ratios are as follows (assuming �i > �j52 1 <
��
i /�

�
j < �i/�j , where the second inequality follows

from ��
i /�

�
j < 1. The latter upper bound is important—

although the fact that faster servers serve more cus-
tomers contributes to system performance, one should
not forget that, in certain cases, higher flux actually
implies higher workload. In particular, this is the case
in our ED-to-IW process, because service admissions
and releases impose workload that is plausibly pro-
portional to flux. For the RMI policy, the servers’ flux
ratio ��

i /�
�
j is bounded by the ratio of their service

rates: ��
i /�

�
j = 4��

i �i5/4�
�
j �j5 < �i/�j when �i > �j ;

thus, if server rates are comparable, a faster server’s
flux can not be much higher than that of a slower one.

Remark 6. The fact that utilization decreases the
faster the server gets, provides an incentive for
servers to work faster, which is positive on one side
but, on the other, might harm service quality, if one
starts serving customers too fast. For example, see the
study by Gans et al. (2003), who describe telephone
agents that intentionally hang up on customers to
maintain low average service times. Another issue is
that if the slow server is not responsible for being
slow (for example, a new server versus a veteran),
“punishing” the server for being slow appears quite
unfair. However, as noted earlier, higher flux may be
considered in certain cases a “punishment” as well.
Hence, to decide which servers perceive themselves
as better off (the faster or the slower) or, alternatively,
what servers’ incentives are (to increase or decrease
his/her service rate), one must account for the servers
utility functions (the ones they strive to optimize),
which combine both criteria (utilization and flux); for
an example of such a utility function, recall (1).

The next theorem characterizes the inverted-V
model under RMI routing in the QED regime. It can
serve as a means for evaluating performance mea-
sures (probability of wait, expected waiting time, etc.)
of the inverted-V model in the QED regime. A sum-
mary of performance measures, both for finite � and
in the limit, as � → �, can be found in Mandelbaum
et al. (2011). Recalling (3), let I� be the stationary
total number of idle servers/customers awaiting ser-
vice in the system with arrival rate �; the random
variable I� takes values in 80 0 0 1N � − 11N �9; by defi-
nition, 4I�5+ =

∑K
i=1 I

�
i ; and 8I� = i9 for negative i indi-

cates that there are �i� customers awaiting service.
As the system size increases (� → �), the variability
of demand increases as well, implying that the mag-
nitude of I� gets larger and larger. Hence, to gain
understanding of the behavior of I�, we consider its
scaled version:

Î� 2= I�
/

√
��3
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such a scaling is typical for the QED regime and is
referred to as a diffusion scaling. Informally, the the-
orem states that, in stationarity, there exists a dimen-
sionality reduction in the sense that the stationary
number of idle servers in pool i satisfies I�i ≈ ai4I

�5+,
for large �; i.e., idle servers are distributed across the
pools proportionally, according to the relative pool
capacities. Moreover, the theorem turns out to pro-
vide an explicit estimate of how close I�i is to ai4I

�5+.
In particular, fluctuations of I�i around ai4I

�5+ grow
with � at a rate 4

√
��, and thus we consider

Î�i 2=
1

√
I�

(

I�i −
c�i
c�

I�
)

1 i = 11 0 0 0 1K0

We refer to the 4
√
�� scale as a subdiffusion scale

because 4
√
�� �

√
�� for large �. Characterization of

RMI behavior on the subdiffusion scale provides
additional insights into the operation of the algo-
rithm; we discuss this further in the next subsection.
Denote by �4 · 5 and ê4 · 5 the standard normal density
and distribution functions, respectively. Let ⇒ denote
convergence in distribution.

Theorem 2. Consider the inverted-V model in steady
state under the RMI routing algorithm in the QED
regime (C1–C2). Then, as �→ �,

(

Î�1 4Î�1 1 0 0 0 1 Î
�
K518Î�>09

)

⇒
(

Î 1 4Î11 0 0 0 1 ÎK518Î>09

)

1 (4)

where Î and 4Î11 0 0 0 1 ÎK5 are independent;

�6Î ≤ 07=
(

1 + �
ê4�5

�4�5

)−1

3

�6Î > x � Î > 07=ê4�− x5/ê4�51x ≥ 0; �6Î ≤ x � Î ≤ 07=
e�x, x ≤ 0; and 4Î11 0 0 0 1 ÎK5 is zero-mean multivariate nor-
mal, with ƐÎi Îj = ai18i=j9 − aiaj .

Proof. See Mandelbaum et al. (2011). �
The contribution of the theorem to understanding

system behavior under RMI is twofold. First, RMI
achieves the same server fairness as LISF and IR (with
appropriate weights) in the sense that idle servers are
distributed across the pools according to the pools rel-
ative capacities (ai’s). This is of significance because
RMI requires less information for its operation than
LISF and, unlike IR, RMI does not utilize information
on pool capacities. Second, the “quality” of allocation
of idle servers across the pools under RMI is revealed.
Specifically, the number of idle servers in a pool devi-
ates from 4c�i /c

�5I� (a number determined by pools
relative capacities) by a random quantity (normally
distributed) of the order 4

√
��. In view of the fact that

the number of idle servers in a pool is proportional
to

√
��, fluctuations of order 4

√
�� are negligible when

� is not small.

Remark 7 (Equal Service Rates). When the service
rates are equal across the server pools, i.e., �1 = �2
= · · · = �K , then � = �̂ = �1, � = �, and N �/�� → 1,
as �→ �, and one recovers the well-known Erlang-C
QED approximation (Halfin and Whitt 1981).

Remark 8. Note that
∑K

i=1 Î
�
i 18Î�>09 = 0 by defini-

tion. The limit (4) is consistent with this condition:
�6
∑K

i=1 Îi = 07= 1, because Ɛ4
∑K

i=1 Îi5
2 = 0.

Remark 9. The dimensionality reduction (on the
diffusion scale) can be deduced from the hydro-
dynamical equations in Dai and Tezcan (2011). For
example, consider the case when there are K = 2
pools. If the fraction of idle servers that are in the first
pool exceeds c�1/c

�, then a disproportionate number
of customers will be routed to the first pool, resulting
in a lower number of idle servers in the first pool.
As similar situation occurs when the fraction of idle
servers that are in the first pool drops below c�1/c

�.
Hence, the ratio of the number of idle servers in dif-
ferent pools should be equal to the ratio of the pool
capacities.

Example 1 (Probability of Delay). Consider an
inverted-V system with the following parameters:
K = 2, q2 = 2q1 = 2/3, and �1 = 2�2 = 2 (e.g., patients/
week). The total number of servers (e.g., beds) is
taken to be

N �
=

⌈

�+ 005
√
�

q1�1 + q2�2

⌉

1

whereas N �
1 = round4q1N

�5 and N �
2 = N � − N �

1 . We
vary the arrival rate � from 10 to 500—this corre-
sponds to varying N �

1 and N �
2 from 3 to 128 and 6 to

256, respectively. In Figure 2, we plot the exact prob-
ability of delay along its QED approximation. Note
that because of the PASTA property, the probability
of delay is equal to �6I� ≤ 07, and, hence, Theorem 2
renders

�6delay7→
(

1 + �
ê4�5

�4�5

)−1

1 (5)

as �→ �. The preceding limit serves as the basis for
calculating QED approximation for the finite system.
To this end, the required QED parameter � changes
slightly with � because the number of servers in
each pool is a natural number. Thus, when evaluat-
ing the QED approximation, we compute � for each
value of �:

��
=

(

1 −
�

N �
1 �1 +N �

2 �2

)

√

�/�̂�1

where

�̂�
=

N �
1 �

2
1 +N �

2 �
2
2

N �
1 �1 +N �

2 �2
0

A QED approximation for the probability of delay is
obtained by evaluating the right-hand side of (5), with
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Figure 2 Exact Values and QED Approximations of the Probability of
Delay for the Sequence of Systems Described in Example 1
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�= ��. As can be seen in Figure 2, the QED approxi-
mation has a reasonable (useful) accuracy when sys-
tem sizes and service rates are similar to those in
Anonymous Hospital (see §2).

Example 2 (Dimensionality Reduction). To illus-
trate the dimensionality reduction that arises in
Theorem 2, we simulated an inverted-V system under
the RMI policy, with parameters that adhere to the
QED scaling (C1) and (C2): K = 2, � = 31950, �1 =

15, �2 = 705, N1 = 138, and N2 = 276 (a1 = a2 =

1/2, �̂= 11025, �≈ 0086). In Figure 3, we plot typi-
cal realizations of the total number of idle servers,
8I�4t51 t ≥ 09, and the centered number of idle server
in the first pool, 8I�1 4t5− a14I

�4t55+1 t ≥ 09. Initially, at
time t = 0, there are no idle servers and no cus-
tomers await service, i.e., I�405 = 0. By time t = 900,
the system is close to its stationary regime (there

Figure 3 Illustration for Example 2
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are more than 7 · 106 arrivals/departures in the time
interval 6019007). One can observe that the processes
8I�4t51 t ≥ 09 and 8I�1 4t5 − a14I

�4t55+1 t ≥ 09 evolve on
two different counting scales—the first one on the√
��-scale (

√
�� ≈ 1807), and the second one on the

4
√
��-scale ( 4

√
�� ≈ 403).

From the following corollary, it is immediate that,
under RMI, the idleness ratios satisfy 41−��

i 5/41−��
j 5

→ �i/�j as � → �; that is, the RMI policy achieves
the same idleness ratios as the LISF policy.

Corollary 1. Consider the inverted-V model in
steady state under the RMI routing algorithm in the
QED regime (C1–C2). Then, as � → �, Ɛ4Î�5− → Ɛ4Î 5−,
Ɛ4Î�5+ → Ɛ4Î 5+, and ƐI�i /

√
�� → aiƐ4Î 5

+ for i = 11 0 0 0 1K,
where Î is as in Theorem 2.

Proof. See Mandelbaum et al. (2011). �

Remark 10 (Loss of Performance). As stated in
the introduction, FSF routing is asymptotically opti-
mal (within the set of all nonpreemptive, nonantici-
pating FCFS policies) in the sense that it stochastically
minimizes the stationary queue length and waiting
time as the arrival rate and number of servers grow
large in the considered inverted-V model. When ana-
lyzing the trade-off between fairness and performance
(i.e., RMI versus FSF), one must consider the following
two aspects.

On one hand, within our mathematical model, fair-
ness comes at the cost of a decrease in system perfor-
mance (e.g., an increase of the probability of delay).
Theorem 2 (and Corollary 1), together with results
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on FSF routing in Armony (2005), provides means
for quantifying the loss of performance under the
RMI policy (relative to FSF). In particular, results
in Armony (2005) indicate that, under the FSF policy,

�6Î ≤ 07=
(

1 + �∗

ê4�∗5

�4�∗5

)−1

3

�6Î > x � Î > 07 = ê4�∗ − x
√

�∧/�̂5/ê4�∗5, x ≥ 0; �6Î ≤�

Î ≤ 07 = e�x, x ≤ 0; �∧ = min�i; and �∗ = �
√

�̂/�∧.
Thus, the probability of delay under the RMI policy is
higher (because �∗ ≥ �) than the probability of delay
under the FSF policy by a factor of

1 + �∗ê4�∗5/�4�∗5

1 + �ê4�5/�4�5
1 (6)

which depends on the spare capacity parameter � and
the ratio of the arithmetic-mean service rate �̂ to the
minimum service rate �∧; recall that in heavy traffic,
only servers with the smallest service rate are idled
under the FSF policy. The increase in the expected
waiting time is given by the same ratio. This follows
from the fact that the conditional expected wait, given
that it is positive, is the same under the two rout-
ing policies. The decrease in performance should be
carefully reviewed to determine if increased delays
are clinically acceptable. For example, in Anony-
mous Hospital (see Table 1), �̂ ≈ 1018 patients/week,
�≈ 1008 patients/week, and � ≈ 0087, leading to the
ratio in (6) being equal to 1.07, i.e., the probability
of delay increases by 7% when employing the RMI
instead of the FSF policy.

On the other hand, as stated in §1, the issue of fair-
ness needs to be examined beyond the mathematical
model with fixed service rates. In particular, ensur-
ing fairness toward medical staff should be viewed
within the context of providing a right set of incen-
tives for staff. Although the waiting time of customers
(patients) is stochastically minimized under the FSF
policy, medical staff working in wards with nonmini-
mal service rates have no incentive to further reduce
LOS—any improvement would lead to a higher load.
Thus, although the FSF policy nominally results in
shorter waiting times, the RMI policy can be more
beneficial for customers in the long run because the
implementation of the RMI policy can eventually lead
to shorter LOSs and, as a result, shorter waiting times.

Weighted RMI. Finally, we note that the RMI
algorithm can be generalized to a weighted RMI
(WRMI) algorithm as follows. Given a set of weights
wi > 0 (i = 11 0 0 0 1K) such that

∑K
i=1 wi = 1, the

WRMI algorithm routes a customer to pool i, at
time t, with probability Iw1�

i 4t−5/
∑K

j=1 I
w1�
j 4t−5, where

Iw1�
i 4t5 = wiI

�
i 4t5. The weights can be used to adjust

idleness ratios to a desired target (relative to the

ratio of service rates) in the QED regime. Unless
all weights are equal, the resulting system is not
reversible, and thus our analysis of RMI can not be
extended to WRMI. However, insights gained from
RMI can be used to heuristically analyze WRMI as fol-
lows. Consider a time instance t such that I�4t5/

√
�� >

0. Then, the departure rate of customers from pool i
is c�i − �iI

�
i 4t5 (where c�i � �iI

�
i 4t5); on the other

hand, customers enter service at pool i with rate
�Iw1�

i 4t5/
∑K

j=1 I
w1�
j 4t5. Therefore, for large �,

ai
aj

≈
c�i −�iI

�
i 4t5

c�j −�j I
�
j 4t5

≈
Iw1�
i 4t5

Iw1�
j 4t5

=
wiI

�
i 4t5

wj I
�
j 4t5

0

In view of the preceding, one expects that the idleness
ratios satisfy, as �→ �,

1 −��
i

1 −��
j

→
wj�i

wi�j

0

5.1. Comments on the Subdiffusion Scale

5.1.1. Relevance and Implications. Based on em-
pirical data from our Anonymous Hospital, we esti-
mated that �≈ 18907 patients/week, and �̂ ≈ 1018
patients/week (see Table 1); thus, �� = �/�̂ ≈ 16008.
These numbers and our theoretical analysis reveal
that there exist three relevant counting scales (bed,
room, subward) and three corresponding time scales
(hour, day, week). To describe a stochastic process of
interest (e.g., the number of available beds), one needs
to define not only an appropriate counting scale, but
also appropriate time intervals (scale) over which rel-
evant changes in the process occur. On time inter-
vals that are too short, no changes in the value of
the process can be observed on the counting scale; on
the other hand, on time intervals that are too long,
the process covers the whole counting scale, and time
variability can not be studied.

The finest counting scale is at the level of an indi-
vidual bed/patient (order-1 scale), whereas the cor-
responding time scale is at the level of an hour
(order-1/�). Indeed, when considering individual
patient arrivals, the relevant time scale is based on
hours because 1/�≈ 0086 hours. The coarsest counting
scale (order-

√
��; diffusion scale) is used to describe

the total number of available beds and patients await-
ing hospitalization. For a large hospital, this scale
is defined by a subward because

√
�� ≈ 1207 (beds

or patients) is approximately the size of one-quarter
to one-third of a ward, and the number of avail-
able beds/patients waiting is proportional to

√
�� (see

Theorem 2). The corresponding time scale is defined
by a “typical” LOS—a week in our case, because
patients stay in a ward a bit less than a week on aver-
age (or 1/�̂≈ 0085 weeks; see Table 1).
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The preceding two pairs of scales are standard for
systems operating in the QED regime. The third pair
of scales is intermediate and due to RMI. The count-
ing scale (subdiffusion scale) is defined by a room
(rooms in Anonymous Hospital have four beds) and
is an order- 4

√
�� scale ( 4

√
�� ≈ 306 (beds or patients)).

This scale is relevant in describing the number of
patients that need to be moved between wards to
make the instantaneous (at a specific moment of time)
idleness ratios equal to the long-run (average) idle-
ness ratios introduced earlier. The latter ratios do not
provide information on the system behavior at a spe-
cific moment of time.

For example, consider the following two scenar-
ios, assuming two symmetric wards: (i) the num-
ber of available beds in the two wards is the same
at all times, and (ii) the number of available beds
in the first ward is higher than in the second one
for a long period of time, and then the situation is
reversed for the same amount of time. Under both
scenarios, the idleness ratio is unity. The room-level
( 4
√
��) counting scale provides information on devia-

tions of the numbers of available beds (in steady state)
from the numbers that ensure that the actual ratios
of idle servers at a given moment of time are equal
to the idleness ratios (average quantities). In partic-
ular, our results imply that fluctuations of instanta-
neous idleness ratios around their long-run averages
are of the order 1/ 4

√
��. The associated time scale is

based on a day (order-1/
√

��̂; 1/
√

��̂ ≈ 0087 days)
and describes relevant time intervals over which these
relatively minor fluctuations of idleness ratios average
out. Recall the two scenarios mentioned above. In the
second one, several cycles are needed for idleness
ratios to converge to unity. Indeed, if one observes
the system for a short period of time only, then the
system appears unfair. Yet, over long periods of time
the system is fair. Finally, we note that the intermedi-
ate counting and time scales are related, in the sense
that the larger the fluctuations of the number of avail-
able beds, the longer time intervals one requires for
convergence of the idleness ratios.

Informally, our results indicate that, under the RMI
policy, fluctuations of the numbers of idle beds in dif-
ferent wards, around values that ensure �i/�j instan-
taneous idleness ratios, are of the order 4

√
�� ≈ 306

(beds or patients); i.e., the room-based counting scale
is relevant. Indeed, Theorem 2 implies

I�i ≈
c�i
c�

I� + Î�i
√
I�1

and hence the idleness rations obey

I�i /N
�
i

I�j /N
�
j

≈
�i

�j

(

1 +
1

√
I�

(

Î�i /ai − I�j /aj

))

0

Moreover, when available beds exist, even the
minor differences (order-1/

√
I� or, equivalently, order-

1/ 4
√
��) between instantaneous idleness ratios and the

corresponding long-run idleness ratios (�i/�j ) are
averaged out on time intervals of order 1/

√

��̂ (time
intervals that contain

√
��-order arrivals/departures

are of interest here, because central limit theorem
deviations are of the order 4

√
�� in that case; conse-

quently, this corresponds to time intervals of length√
��/� = 1/

√

��̂). In Anonymous Hospital, this cor-
responds roughly to days (1/

√

��̂ ≈ 0087 days), and
consequently one expects desired idleness ratios (with
very high accuracy) on a weekly basis. Interestingly,
the same behavior of intermediate scales occurs when
the system operates under the LISF rule (see below).

5.1.2. Technical Discussion. Even though the
three considered algorithms operate in different ways,
they result in the same behavior on the diffusion scale.
However, differences arise on the subdiffusion scale.
Informally, Theorem 2 states that, for large �, RMI
deviations of I�i around c�i /c

� 4I�5+ are on the order
of 4

√
��; note that both I�i and 4I�5+ are

√
��-order

random variables. On the other hand, under IR pol-
icy, I�i 4t5 − ai4I

�5+ is an order-1 random variable, as
�→ �. Consequently, although implementing RMI in
a hospital setting will not ensure that an instanta-
neous idleness ratio is equal exactly to the desired
value �i/�j at all times, the number of available beds
in a ward will only differ from the desired one by a

4
√
��-quantity, which is negligible in comparison with

the number of available beds in a ward.
Furthermore, it should be noted that, under both

the IR and RMI policies, there exists a separation
of time scales; namely, the processes 8I�4t5/

√
�1 t ≥

09 and 8I�i 4t5/
√
�1 t ≥ 09 evolve on the order-1 time

scale under both policies. This is typical in the
QED regime—no time speedup is needed, in contrast
to the case of conventional heavy traffic. However,
the processes 8I�i 4t5 − ai 4I

�4t55+1 t ≥ 09 and 84I�i 4t5 −

c�i /c
� 4I�4t55+5/

4
√
��1 t ≥ 09 evolve on the �−1- and

4��̂5−1/2-time scales, as � → �, under IR and RMI
routing, respectively. Hence, there is a separation of
time scales, because the latter processes evolve on
much faster time scales (order-�−1 and order-4��̂5−1/2)
than the former processes (order-1 time scale). In
Figure 4, we plot typical sample paths of 8I�1 −

a14I
�4t55+1 t ≥ 09 under RMI and IR routing, for the

system described in Example 2—the difference in
counting and time scales is evident. Therefore, in
the context of Anonymous Hospital, the desired idle-
ness ratios are maintained not only in the long run,
but also on shorter time intervals. In particular, pro-
vided that idle servers exist (I�405

√
�� > � for some

� > 0), intervals of order �−1 and 4��̂5−1/2 are required
under IR and RMI, respectively, for convergence of
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Figure 4 Typical Sample Paths of 8I�1 4t5− a14I
�4t55+1 t ≥ 09 in an Inverted-V System Under the RMI (left) and IR (Right) Policies
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the empirical idleness ratios to the long-run averages
41 −��

i 5/41 −��
j 5, in the sense that (for large �)

√
��

(

41/N �
i 5
∫ t/�

0 I�i 4u5du

41/N �
j 5
∫ t/�

0 I�j 4u5du
−

1 −��
i

1 −��
j

)

and

4
√
��

(

41/N �
i 5
∫ t/

√
��̂

0 I�i 4u5du

41/N �
j 5
∫ t/

√
��̂

0 I�j 4u5du

−
1 −��

i

1 −��
j

)

converge to 0 as t increases (t is an order-1 quantity
here) for IR and RMI, respectively.

In certain cases, the time scale separation can be
used to explicitly evaluate the subdiffusion behavior
of the system under IR routing in the QED regime.
As seen in the following example, the idea is to
exploit the fact that the subdiffusion process evolves
on a faster time scale than diffusion processes. Recall
that the subdiffusion behavior under RMI is charac-
terized in Theorem 2.

Example 3 (Subdiffusion Scale Under IR). Con-
sider the inverted-V model in the QED regime, under
IR routing, with K = 2, w1 = w2 = a1 = a2 = 1/2, and
note that 4I�1 4t5 − I�4t5/21 I�2 4t5 − I�4t5/25 = 44I�1 4t5 −

I�2 4t55/21 4I�2 4t5− I�1 4t55/25. The heavy-traffic averaging
principle (e.g., see Coffman et al. 1995) states that,
when considering the distribution of 4I�1 4t5− I�2 4t55, as
�→ �, one can act as if the total number of (scaled)
idle servers is fixed (Whitt 2002, p. 70). In particu-
lar, on the event 8I�4t5/

√
�� > �9, � > 0, the distri-

bution of 4I�1 4t5 − I�2 4t55 converges, as � → �, to the
stationary distribution of the birth–death continuous-
time Markov chain, with transition rates ri1 i+1 = 1/2+

18i<09 + 41 − �518i=09 and ri1i−1 = 1/2 + 18i>09 + �18i=09
(here we assume that, if the two pools have the same
number of idle servers, then a customer is routed to

the first pool with probability � ∈ 60117). Indeed, if
4I�1 4t5− I�2 4t55 is positive, then departures from pool 2
and new arrivals contribute to a decrease of this
quantity; on the other hand, departures from pool 1
increase 4I�1 4t5− I�2 4t55. This leads, for any � > 0, to

�
[

I�1 4t5− I�2 4t5= i � I�4t5/
√
�� > �

]

→
(

1 + 241 −�518i>09 + 2�18i<09

)

3−�i�−11

as �→ �.

We conjecture that the subdiffusion behavior of
the system under the LISF algorithm is the same as
the one under RMI. The conjecture is based on the
following heuristic reasoning. A way to implement
the LISF policy is to have servers completing ser-
vice join a queue of idle servers. This queue oper-
ates in an FCFS fashion. Whenever a customer needs
to be assigned to a server, it is routed to the server
at the head of the queue. Observe that, under the
described scheme, the server that has been idle for
the longest time is assigned a customer before any
other server. The state of the queue of idle servers at
time t is an ordered list that consists of pool labels
(1121 0 0 0 1K). Now, consider an inverted-V model in
the QED regime (�→ �) at a time instance t such that
I�4t5/

√
�� > 0. Then, all the servers in the idle queue

joined the queue within a time interval that is on the
order of 1/

√

��̂; i.e., I�4t5/
√
�� remains approximately

constant during this interval of time. The server pool
labels in the idle queue are approximately indepen-
dent, with a label being equal to i with probability

c�i −�iI
�
i 4t5

c� −
∑K

i=1 �iI
�
i 4t5

≈
c�i − ai�iI

�4t5

c� − �̂I�4t5
= ai +ä41/

√
��5

for large �; the standard asymptotic notation
ä41/

√
��5 indicates that the second term is of the
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order 1/
√
��. The preceding equation is due to the

fact that a given label is of type i if a server in
pool i completes service before any other server in the
other pools. As a consequence, the random variable
4I�1 4t5− a1I

�4t55 is of the order 4
√
��, because of the cen-

tral limit theorem and the fact that the total number
of labels in the queue is I�4t5, a quantity proportional
to

√
��.

6. Concluding Remarks
We considered routing algorithms that are applica-
ble to routing hospital patients from the emergency
department to internal wards. Given the heterogene-
ity of the wards, the objective is to achieve fairness
from the point of view of hospital staff, while not
hurting efficiency too severely. Wards are modeled as
server pools, and two types of quantities are used to
quantify fairness: idleness ratios and flux ratios. Under
the LISF policy, which is considered to be “fair” and
is commonly used in call centers, both ratios tend to
the ratios of service rates in the respective server pools,
when the system is in the QED regime; the appro-
priateness of the QED regime in modeling the ED-to-
IW process is supported by empirical data, collected
in Anonymous Hospital. In other words, LISF rout-
ing leads to a desirable outcome: faster servers work
less, yet they produce more (serve more customers).
However, the applicability of LISF routing in hospitals
is limited because the algorithm requires information
unavailable in hospitals on a real-time basis. The same
idleness and flux ratios can be achieved by IR rout-
ing; yet, in that case, one must estimate (time-varying)
ward (server pool) service capacities. We thus propose
a randomized routing policy, RMI, that attains the
same desired performance ratios as LISF, but requires
only the number of idle servers in server pools for
making decisions. The policy can be implemented in a
hospital by using, for example, patient ID numbers as
sources of randomness. A generalized version of RMI,
WRMI, can be used to fine-tune the desired outcome.

The three algorithms (LISF, IR, and RMI) share one
feature in common; namely, these algorithms achieve
the desired idleness ratios (equal to service-rate ratios)
by attempting to maintain the ratios of the num-
bers of idle servers in different pools equal to these
idleness ratios at all times. However, because idle-
ness ratios represent an average performance mea-
sure, one can vary the instantaneous ratios of idle
servers depending on the total number of idle servers
and still achieve the target (average) idleness ratios.
This approach was proposed by Armony and Ward
(2010). The advantage of such an algorithm is that it
delivers a lower average waiting time compared to
LISF, while maintaining the same long-run idleness
ratios as LISF. However, the gain in performance does

not come for free. In particular, one must determine
the optimal number of idle servers ratios as a func-
tion of the total number of servers and, therefore, the
parameters of the system must be known (arrival rate,
pool service capacities), i.e., the policy is effectively
not blind.

6.1. Partial Information Routing—
Simulation Analysis

We mentioned above that availability of information
is critical for determining an appropriate routing pol-
icy in hospitals. Our proposed routing, RMI, requires
the information on the number of available beds at
each ward at the moment of routing (information that
is quite minimal compared to the other routing poli-
cies considered in this paper). However, the occu-
pancy status in the IWs is not available on a real-time
basis in Anonymous Hospital; instead, the ED relies
on one bed census update per day (in the morning).
Thus, to implement RMI routing, it is necessary to
estimate the system state at decision times, based on
the system state at the last update time point.

An example of such partial-information routing
can be found in Tseytlin and Zviran (2009), where
the authors created a computer simulation model
of the ED-to-IW process in Anonymous Hospital.
They used it to examine various routing policies,
according to some fairness and performance crite-
ria, while accounting for the scarcity of informationin
the system. Simulating the ED-to-IW process helped
achieve additional practical insights, by accommo-
dating some analytically intractable features (such as
time-inhomogeneous Poisson arrivals), and allowed
analysis of more complex routing algorithms. The
best-performing algorithm (in terms of both staff
fairness and operational performance) proposed
by Tseytlin and Zviran (2009) was an algorithm that
minimized at each decision point a convex combina-
tion of the two conflicting demands: balanced occu-
pancy rates and balanced flux. The implementation
under partial information resulted in almost no dete-
rioration of performance.

To conclude, we now explain briefly the way that
the lacking information is predicted. Denote by Mj

the number of occupied beds (busy servers) in ward
(pool) j . This counter is updated at some time point T
and is estimated at other decision time points accord-
ing to the patient routing and the ward service rate;
namely, we estimate the number of occupied beds in
ward j at time t > T to be equal to 4Mj −Mj�j4t − T 55+,
j = 1121314. After a routing decision is made, we
update Mk = Mk + 1 (k denotes the ward chosen to
admit the next patient).

6.2. Routing at the Level of Individual Providers
Instead of examining fairness via our bed-based
model, one can study fairness be means of a more
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complex staff-based model. Such a more detailed
model could potentially be used to study fairness
at the level of individual care provides rather than
wards. (It would thus be more relevant to the U.S.
healthcare system, where typically nurses do not have
fixed ward assignments and are paid on an hourly
basis.) In that case, one still needs to keep track of
the number of patients in wards. However, two addi-
tional aspects must be modeled explicitly: (i) patient
“service” requests, i.e., when certain tasks need to
be performed by nurses/doctors (for example, in
Belgium, nurses work is broken down into 23 repre-
sentative tasks for planning purposes; Williams 2000);
and (ii) the process of assigning of these tasks to indi-
vidual staff members. For example, a model can be
constructed from the following components:

• Parallel-server systems with heterogeneous
serves (Atar 2008): A system represents a ward, and
servers represent medical staff; tasks in a ward are
assigned to individual doctors/nurses according to a
(ward) scheduling policy.

• Erlang-R (“R” for “reentrant”) model with a
bounded number of customers (Yom-Tov and Mandel-
baum 2011): The reentrant aspect of the model cap-
tures the fact that customers (patients) require service
(tasks) multiple times during their sojourn times (LOS)
in the system; the bounded number of customers is
due to the finite number of beds in a ward.

• A (hospital) routing policy that assigns cus-
tomers (patients) to one of parallel Erlang-R systems
(wards) with heterogeneous servers.
Overall fairness can be achieved by enforcing fairness
both at the inter- and intraward levels. There exist
multiple time scales in this model: a task scale (min-
utes/tens of minutes), a “content” scale (tens of min-
utes/hours; time between tasks for a single patient),
a shift scale (hours), and finally a length-of-stay
(a week) scale. These scales can potentially be used to
simplify the analysis of the system. Indeed, during a
patient’s stay in the hospital, not only many tasks are
performed, but also many shifts are rotated. Hence,
one expects that a patient experiences an “equivalent”
service (task) rate on the LOS scale. This equivalent
rate is a function of staff in the ward as well as the
task assignment policy. As a consequence, when con-
sidering routing at the hospital level, one can plausi-
bly replace the heterogeneous Erlang-R model with a
parallel-server system with an equivalent service rate,
i.e., one obtains our inverted-V model.

6.3. Future Research
We propose a number of research directions moti-
vated by our work. First, robustness of our insights
against distributional assumptions on service times
remains to be investigated. Second, the inverted-V
model takes into account primarily the number of beds

in each ward, whereas hospital staff (nurses and doc-
tors) affect the model indirectly through server ser-
vice rates. The model can be improved by explicitly
modeling staff as well. In that case, two-scale (doctors
and beds) models arise. Third, patients to be hospital-
ized in the IWs are classified into several categories.
When arriving to the ED, patients are classified as
“walking” or “lying”; in addition, prior to running
the Justice Table, they are classified as “regular,” “spe-
cial care,” or “ventilated.” The load, imposed on the
hospital by patients, varies significantly among differ-
ent categories, in LOS, complexity of treatment, and
waiting times. Thus, it is of prime interest to extend
our model to accommodate multiple customer classes.
Last, in the present work, service rates are taken
to be exogenous quantities, i.e., there is no attempt
to capture possible dependency between the routing
algorithm and service rates of doctors and nurses.
However, such dependency does exist because the
hospital staff adapts to routing policies by increasing/
decreasing their service rates and/or quality of care.
Tools from game theory can be applicable in model-
ing such effects.
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